Zur Kristallstruktur von Ba₃SnFe₁₀O₂₀

P. Sonne und Hk. Müller-Buschbaum

Kiel, Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40-60, W-2300 Kiel (Deutschland)

(Eingegangen am 29. April 1992)

Abstract

Single crystals of Ba₃SnFe₁₀O₂₀ were prepared for the first time using a CO₂ laser technique. X-ray investigations show monoclinic symmetry, space group C_{2h}^{3} - $C1^{2}/m1$, a=16.121 Å, b=11.879 Å, c=5.222 Å, $\beta=107.82^{\circ}$, Z=2. Ba₃SnFe₁₀O₂₀ belongs to the Pb₃GeAl₁₀O₂₀ type. It is characterized by a complicated structure with corrugated double layers of corner-sharing MO₄ tetrahedra.

Zusammenfassung

Erstmals wurden mit Hilfe der CO₂-Laser-Technik Einkristalle von Ba₃SnFe₁₀O₂₀ dargestellt und röntgenographisch untersucht (Raumgruppe C_{2h}^{3} - $C1^{2}/m1$, a = 16,121 Å, b = 11,879 Å, c = 5,222 Å, $\beta = 107,82^{\circ}$, Z = 2). Ba₃SnFe₁₀O₂₀ gehört zum Pb₃GeAl₁₀O₂₀-Typ, der durch eine komplizierte Struktur mit gewellten Doppelschichten aus eckenverknüpften MO₄-Tetraedern charakterisiert ist.

1. Einleitung

Schon 1970 gelang mit der Darstellung von $Pb_3GeAl_{10}O_{20}$ [1] die Präparation der ersten einer Reihe von Verbindungen der Formel A₃M⁴⁺M'₁₀O₂₀, mit $A \equiv Pb$, Ba, Sr; $M \equiv Ge$, Si, Ti, Mn; und M' $\equiv Al$, Ga, Tl, In [2-7]. Ba₃SnFe₁₀O₂₀ wurde bereits 1981 bei Untersuchungen des Systems BaO-SnO₂-Fe₂O₃ entdeckt [3] und Anhand von Röntgenuntersuchungen an mikrokristallinem Material gezeigt, daß es im Pb₃GeAl₁₀O₂₀-Typ kristallisiert. Das Problem einer abschließenden Röntgenstrukturanalyse waren die im Gegensatz zu Pb₃GeAl₁₀O₂₀ und Pb₃MnAl₁₀O₂₀ [7] fehlenden Einkristalle von Ba₃SnFe₁₀O₂₀. Die Ursachen hierfür liegen nach unseren Erfahrungen in den nicht ausreichenden Reaktionstemperaturen (1600 °C) der älteren Untersuchungen. Mit Hilfe der CO₂-Laser-Technik [8-12], die auch den Hochtemperaturbereich erschließt, konnten nun erstmals Einkristalle von Ba₃SnFe₁₀O₂₀ erhalten werden, die eine komplette Strukturuntersuchung ermöglichten.

2. Darstellung und röntgenographische Untersuchung von Ba₃SnFe₁₀O₂₀-Einkristallen

 $BaCO_3$, SnO_2 und Fe_2O_3 wurden im Verhältnis 3:1:5 im Achatmörser verrieben und zu Tabletten von 10 mm Durchmesser verpreßt. Diese wurden mit CO_2 -Laser-Energie schnell bis zum Aufschmelzen erhitzt, anschließend etwa 10 min dicht unterhalb des Schmeltzpunktes getempert und danach rasch abgekühlt. In dem erstarrten Schmelzregulus befand sich eine große Zahl rötlich-schwarzer Plättchen, die mechanisch abgetrennt wurden. Die analytische Untersuchung mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10000) an einzelnen Kristallen bestätigte mit standardfreier Meßtechnik das eingesetzte Metallverhältnis Ba:Sn:Fe = 3:1:5.

Aus Weissenberg- und Precessionaufnahmen sowie Vierkreisdiffraktometermessungen wurden die kristallographischen Daten ermittelt. Sie sind zusammen mit den Meßbedingungen in Tabelle 1 aufgeführt. Die Verfeinerung der in Tabelle 2 zusammengestellten endgültigen Lageparameter erfolgte mit Hilfe des Programms SHELX-76 [13]. Die wichtigsten interatomaren Abstände zeigt Tabelle 3.

3. Beschreibung der Struktur von $Ba_3SnFe_{10}O_{20}$ mit Diskussion

Die Atomparameter von Tabelle 2 zeigen, daß die kleinen Sn^{4+} - und Fe³⁺-Ionen vier verschiedene Punkt-

Gitterkonstanten (Å)	a = 16,121(4) b = 11,879(3) c = 5,222(1)
Zellvolumen (Å ³)	$\beta = 107,82(2)^{\circ}$ 952.08
Auslöschungen	hkl: h+k=2n
5	h0l: h=2n
	0k0:k=2n
Raumgruppe	C_{2h}^{3} - $C1^{2}/m1$ (Nr. 12)
Zahl der Formeleinheiten	
pro EZ	2
Diffraktometer	4-Kreis, Siemens AED 2
Strahlung/	
Monochromator	Mo K α /Graphit, eben
20-Bereich:	5°<2 <i>Θ</i> <70°
Meßmodus	$\Omega/2\Theta$
Schrittweite	Learnt profile
Korrekturen	Polarisations- und Lorentzfaktor, Untergrund, empirische Absorption
Anzahl der Reflexe	1313
Gütefaktor	$0,050 \ (F_{o} > 3\sigma(F_{o}))$

TABELLE 1. Meßbedingungen und kristallographische Daten für $Ba_3SnFe_{10}O_{20}$ mit Standardabweichungen in Klammern

lagen besetzen. Auf zwei dieser Punktlagen befinden sich ausschließlich Fe^{3+} -Ionen in einer tetraedrischen O^{2-} -Koordination. Die beiden anderen Punktlagen sind durch Sn^{4+} und Fe^{3+} mit unterschiedlichen Mengen besetzt. Diese Metallpositionen sind im Kristallgitter oktaedrisch durch O^{2-} koordiniert. Der in der Bruttoformel zum Ausdruck kommende große Überschuß an Zinn und Eisen dominiert die Kristallstruktur. Dies drückt sich auch in Abb. 1 aus, die einen Einblick in die Polyederverknüpfung gibt.

Der komplizierten Gerüststruktur von ${}^{3}_{\infty}$ [SnFe₁₀O₂₀] liegt eine Abfolge alternierender Schichten zugrunde, die parallel zur *b/c*-Ebene liegen. Betrachtet man die in Abb. 1 am linken und rechten Rand der Elementarzelle gezeichneten Schichten, so sind je sechs eckenverknüpfte FeO₄-Tetraeder zu erkennen, die einen geschlossenen Ring bilden. Diese Ringe sind längs [001] eindimensional unendlich zu Bändern verknüpft. Alle freien Tetraederspitzen eines solchen Bandes weisen in eine Richtung. Im Inneren der Elementarzelle wiederholen sich längs [100] diese aus FeO_4 -Tetraedern aufgebauten Bänder. In Richtung [100] sind die bisher als frei beschriebenen Tetraederspitzen der Fe_6O_{18} -Tetraederringe miteinander zu Doppelschichten verknüpft Innerhalb dieser Doppelschichten verlaufen entlang [010] tunnelförmige Hohlräume in die Ba(2) (Kugel mit Segment) eingelagert ist. Ba(2) erhält durch die O^{2-} -Ionen der Tunnel eine unsymmetrische (3+4)-Koordination.

Die aus allseits eckenverknüpften Tetraedern bestehenden Doppelschichten werden untereinander durch eine weitere Polyederschicht verbunden. In dieser zweiten Schicht finden sich die MO_6 -Oktaeder um die Positionen (Sn/Fe) (1) und (Sn/Fe) (2). Durch Kantenverknüpfung dieser Oktaeder untereinander entstehen längs [001] eindimensional unendliche Ketten. In ihnen findet sich eine alternierende Folge von Einzeloktaedern (enge Schraffur) und Doppeloktaedern (weite Schraffur). Zwischen FeO₄-Tetraederschichten und (Sn/Fe)O₆-Oktaederketten entstehen wiederum tunnelförmige Hohlräume in Richtung [001]. In diesen Tunneln ist Ba(1) (in Abb. 1 große offene Kugeln) eingelagert, das eine gestaucht oktaedrische Sauerstoffkoordination aufweist.

Bemerkenswert an der Kristallstruktur des $A_3MM'_{10}O_{20}$ -Typs ist die unterschiedliche Besetzung der Lagen für die kleinen Kationen. Bei ersten Untersuchungen an der Verbindung Pb₃GeAl₁₀O₂₀ [1] wurde zunächst eine total statistische Verteilung von Ge⁴⁺ und Al³⁺ auf alle vier Lagen angenommen. Eine spätere Arbeit [3] zeigt auf, daß Sn⁴⁺ und Fe³⁺ nur die beiden oktaedrisch koordinierten Lagen gemeinsam besetzen. Alle späteren Untersuchungen bestätigten diese Metallverteilung. Die hier für Ba₃SnFe₁₀O₂₀

TABELLE 2. Parameter mit Standardabweichungen in Klammern für Ba₃SnFe₁₀O₂₀. In der Raumgruppe C_{2h}^{3} - $C1^{2}/m1$ sind folgende Punktlagen besetzt

Atom	Lage	x	у	z	<i>B</i> (Å ²)
 Ba(1)	(2 <i>d</i>)	0.0	0,5	0,5	1,42(2)
Ba(2)	(4i)	0,2195(1)	0,0	0,2398(2)	1,37(2)
Sn/Fe(1)	(g)	0,0	0,1353(1)	0,0	0,72(2)
Sn/Fe(2)	(2c)	0,0	0,0	0,5	0,68(2)
Fe(1)	(8j)	0,3551(1)	0,1370(1)	-1,1582(3)	0,89(2)
Fe(2)	(8j)	0,3617(1)	0,2843(1)	0,3368(3)	0,85(2)
O(1)	(8j)	0,0738(4)	0,1196(6)	0,387(1)	0,79(9)
O(2)	(8j)	0,4172(4)	0,2537(6)	0,072(1)	1,00(9)
O(3)	(8j)	0,2396(5)	0,1398(7)	-0,181(1)	1,5(1)
O(4)	(4 <i>i</i>)	0.4003(7)	0,0	0,017(2)	1,4(2)
O(5)	(8j)	0,3588(4)	0,1434	0,492(1)	1,2(1)
O(6)	(4 <i>i</i>)	0,0658(6)	0,0	-0,108(2)	0,8(1)

TABELLE 3. Interatomare Abstände (Å) für Ba₃SnFe₁₀O₂₀ mit Standardabweichungen in Klammern

Ba(1)-O(4) -O(5)	2,686(9) 2,833(8)	(2×) (4×)	Fe(3)-O(3) -O(4) -O(5) -O(2)	1,830(8) 1,843(5) 1,848(8) 1,906(7)
Ba(2)-O(6) -O(5) -O(3) -O(1)	2,585(8) 2,805(7) 2,851(9) 3,038(8)	(2×) (2×) (2×)	Fe(4)-O(3) -O(5) -O(1) -O(2)	1,825(8) 1,867(8) 1,882(6) 1,897(8)
Sn/Fe(1)-O(2) -O(1) -O(6)	1,993(8) 2,018(6) 2,095(7)	(2×) (2×) (2×)		
Sn/Fe(2)-O(6) -O(1)	1,998(8) 2,051(7)	(2×) (4×)		

Abb. 1. Perspektivische Darstellung der Polyederanordnung in Ba₃SnFe₁₀O₂₀. Fe(2)O₄-Tetraeder und Sn/Fe(1)O₆-Oktaeder, weit schraffiert; Fe(1)O₄-Tetraeder und Sn/Fe(2)O₆-Oktaeder, eng schraffiert; Ba(1), große leere Kugel; Ba(2), Kugel mit Segment; O²⁻, kleine leere Kugel. Die Abmessung der Elementarzelle ist eingezeichnet.

durchgeführten Berechnungen des Coulombanteils der Gitterenergie [14, 15] unterstützen die in Tabelle 2 aufgeführte Verteilung von Sn^{4+} und Fe^{3+} , so daß sich entgegen der Erwartung keine Gleichverteilung von Sn^{4+} auf die zwei oktaedrisch koordinierten Lagen ergibt.

Alle Rechnungen wurden auf der elektronischen Rechenanlage VAX 8550 der Universität Kiel durchgeführt und die Zeichungen mit einem modifizierten ORTEP-Programm [16, 17] erstellt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich Technische Zusammenarbeit m.b.H., W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56356, des Autors und Zeitschriftenzitats angefordert werden.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

References

- 1 H. Vinek, H. Völlenkle und H. Nowotny, *Monatsch. Chem.*, 101 (1970) 275.
- 2 J. Guha, D. Kolar und B. Volavsek, J. Solid State Chem., 16 (1976) 49.
- 3 M. C. Cadee und D. W. J. Ijdo, J. Solid State Chem., 36 (1981) 314.
- 4 M. C. Cadee, J. W. Ijdo und G. Blasse, J. Solid State Chem., 41 (1982) 39.
- 5 M. C. Cadee, G. C. Verschoor und D. J. W. Ijdo, Acta Crystallogr. C, 39 (1983) 921.
- 6 G. D. Fallon, B. M. Gatehouse und P. J. Wright, J. Solid State Chem., 60 (1985) 203.
- 7 A. Teichert und Hk. Müller-Buschbaum, J. Less-Common Met., 170 (1991) 315.
- 8 H. Pausch, Dissertation, Universität Kiel, 1976.
- 9 C. K. N. Patch, Phys. Rev., 136 (1964) 1187.
- 10 C. K. N. Patch, P. K. Thien und J. H. McFee, Appl. Phys. Lett., 7 (1965) 290.
- H. Pausch und Hk. Müller-Buschbaum, Z. Naturf. B, 34 (1979) 371.
- H. Pausch und Hk. Müller-Buschbaum, Z. Naturf. B, 34 (1979) 375.
- 13 G. M. Sheldrick, SHELX-76, Program System for Crystal Structure Determination, University of Cambridge, 1976.
- 14 R. Hoppe, Angew. Chem., 78 (1966) 52.
- 15 R. Hoppe, Angew. Chem., 82 (1970) 7.
- 16 C. K. Johnson, *Rep. ORNL-3794*, 1965 (Oak Ridge, National Laboratory, TN).
- 17 K.-B. Plötz, Dissertation, Universität Kiel, 1982.